Development of a Stewart Platform-based 6-axis Force Sensor for Robot Fingers
نویسندگان
چکیده
This paper describes the development of a Stewart platform-based robot force sensor with distinctive structure of ball joints. The number of ball joints is only a half of the similar style sensors, so it is possible to reduce size and weight of the sensor. The structure of ball joint is described and discussed. Furthermore, we use strain gauges, but not liner voltage differential transformers, as sensing elements, in order to reduce size and weight of the sensor. It is also proposed that beams are replaced with pipes as sensing elements of the sensor. The ball joints and sensing elements with pipes can effectively reduce the error of the sensor. A geometric analysis model is also proposed. The external force and its moment can be measured with this model. Moreover, the performance of this sensor was tested. The test results conducted to evaluate the sensing capability of the sensor is reported and discussed.
منابع مشابه
Flexible Foot/Ankle Based on PKM with Force/Torque Sensor for Humanoid Robot
This paper describes the development of a novel humanoid robot foot/ankle based on an orientation Parallel Kinematic Mechanism for intelligent and flexible control. With three identical Universal-Prismatic-Spherical prismatic-actuated limbs and a central Universal-Revolute passive limb, the PKM can perform three degrees of freedom rotation motions. In order to enable the humanoid robot safely t...
متن کاملDesign and development of ShrewdShoe, a smart pressure sensitive wearable platform
This study introduces a wearable in-shoe system for real-time monitoring and measurement of the plantar pressure distribution of the foot using eleven sensing elements. The sensing elements utilized in ShrewdShoe have been designed in an innovative way, they are based on a barometric pressure sensor covered with a silicon coating. The presented sensing element has great linearity up to 300...
متن کاملTactile Sensing-Based Control Architecture in Multi-Fingered Arm for Object Manipulation
This report presents the development of tactile sensing-based control architecture in a multi-fingered humanoid robot arm for object manipulation tasks. With the aim to enhance the ability to recognize and manipulate object in humanoid robot, we developed a novel optical three-axis tactile sensor system mounted on fingertips of the humanoid robot fingers. This tactile sensor applies an optical ...
متن کاملObject Exploration Using a Three-Axis Tactile Sensing Information
Problem statement: To advance the robust object recognition of robots, we present an algorithm for object exploration based on three-axis tactile data that is necessary and sufficient for the evaluation of contact phenomena. Approach: The object surface contour is acquired by controlling the finger position so that the normal force, measured by optical three-axis tactile sensors, remains consta...
متن کاملModeling and Wrench Feasible Workspace Analysis of a Cable Suspended Robot for Heavy Loads Handling
Modeling and Wrench feasible workspace analysis of a spatial cable suspended robots is presented. A six-cable spatial cable robot is used the same as Stewart robots. Due to slow motion of the robot we suppose the motion as pseudostatic and kinetostatic modeling is performed. Various workspaces are defined and the results of simulation are presented on the basis of various workspaces and app...
متن کامل